{"id":14209,"date":"2018-07-10T13:55:52","date_gmt":"2018-07-10T17:55:52","guid":{"rendered":"https:\/\/dyzedesign.com\/?p=14209"},"modified":"2024-05-30T09:34:10","modified_gmt":"2024-05-30T13:34:10","slug":"3d-print-speed-calculation-find-optimal-speed","status":"publish","type":"post","link":"https:\/\/dyzedesign.com\/fr\/2018\/07\/3d-print-speed-calculation-find-optimal-speed\/","title":{"rendered":"3D Printer Print Speed Calculation: How to find the optimal speed for reliable and constant print quality"},"content":{"rendered":"

[vc_row css= ».vc_custom_1531164437568{margin-bottom: 20px !important;} »][vc_column][vc_column_text]Choosing the right speed for your print can be quite a challenge, especially if you are new to 3D printing. After a bit of trial and error, you\u2019ll be able to guess a setting that will generally work. Still, you\u2019ll have a lot of variation with your results. Finally, you might not be using your hardware at its full potential by randomly choosing values.<\/p>\n

The print speed calculator has been developed to help you choose the right setting based on our experimental values. This blog will teach you the basics for understanding 3D printer extrusion, how we developed the calculator and why it can be very useful for you.[\/vc_column_text][\/vc_column][\/vc_row][vc_row][vc_column][vc_column_text]<\/p>\n

Using the right line width<\/h2>\n


\n[\/vc_column_text][\/vc_column][\/vc_row][vc_row css= ».vc_custom_1531241115837{padding-bottom: 15px !important;} »][vc_column][vc_column_text css= ».vc_custom_1531316234005{padding-bottom: 20px !important;} »]Line width is a critical parameter for a successful print. Most software will generally calculate it automatically, but you\u2019ll soon realize it\u2019s much better to configure it by yourself.<\/p>\n

The slicer\u2019s automatic calculation consider the nozzle size and increase it by 20%. A general rule of thumb accepted by 3D printer users suggest a line width up to 50% bigger than the nozzle. Although this generally works fine in most cases, you\u2019ll see a big drop in print quality and consistency with bigger nozzles and layer height.[\/vc_column_text][vc_single_image image= »14213″ img_size= »full » add_caption= »yes » alignment= »center »][\/vc_column][\/vc_row][vc_row][vc_column][vc_column_text]<\/p>\n

Understanding the extruded profile<\/h3>\n

[\/vc_column_text][\/vc_column][\/vc_row][vc_row css= ».vc_custom_1531241234891{padding-bottom: 15px !important;} »][vc_column][vc_column_text]The molten plastic is pushed in something like an oblong shape. For simplifications, we\u2019ll consider a perfect oblong shape. This flattening ensures a good bond between the layer underneath or the bed. Extruding a perfect circle would make very weak since each layer would barely be touching each other.[\/vc_column_text][vc_single_image image= »14215″ img_size= »large » alignment= »center » onclick= »link_image »][\/vc_column][\/vc_row][vc_row][vc_column][vc_column_text]<\/p>\n

Too small line width<\/h4>\n

[\/vc_column_text][\/vc_column][\/vc_row][vc_row css= ».vc_custom_1531241234891{padding-bottom: 15px !important;} »][vc_column][vc_column_text]This oblong radius is equal to half the line height. The radius is changing with the layer height. The higher the layer height, the larger is the radius. At some point, the traditional 20% increase in line width can\u2019t cut it and will under-extrude. Under extrusion happens when there is little to no line flat from the extruded oblong. The figure below shows an example where the extrusion has no flats. In this configuration, the layer height is equal to the line width. The line flat is equal to zero.[\/vc_column_text][vc_single_image image= »14214″ img_size= »large » alignment= »center » onclick= »link_image »][\/vc_column][\/vc_row][vc_row content_placement= »middle » css= ».vc_custom_1531241606662{padding-bottom: 15px !important;} »][vc_column][vc_column_text]<\/p>\n

Minimum line width<\/h4>\n

The minimum line width can be considered when the flat width is equal to the nozzle size. This ensures that the oblong shape is properly formed and uniform.[\/vc_column_text][vc_column_text css= » »]<\/p>\n

\n

\"Minimum line width = Layer height + Nozzle size\"<\/p>\n

[\/vc_column_text][vc_column_text]For example, a 0.40mm nozzle with a 0.20mm should have a line width of at least 0.60mm.<\/p>\n

The figure below shows a minimal configuration for line width.<\/p>\n

Please note that the line width could actually be a little smaller than this suggested formula. The shape will slightly differ from the perfect oblong shape depending on the polymer flow. In most cases, a smaller line width is totally fine.[\/vc_column_text][vc_single_image image= »14216″ img_size= »large » alignment= »center » onclick= »link_image »][\/vc_column][\/vc_row][vc_row content_placement= »middle » css= ».vc_custom_1531241606662{padding-bottom: 15px !important;} »][vc_column][vc_column_text]<\/p>\n

Maximum line width<\/h4>\n

The maximum line width will depend on your nozzle flat width. Manufacturers should specify this dimension to configure your slicer accordingly. The maximum line flat should be equal to the nozzle flat. Note that any overflow will have an impact on top infill quality, as it will tend to rise around the nozzle.<\/p>\n

[\/vc_column_text][vc_column_text css= » »]<\/p>\n

\"Maximum line width = Layer height + Nozzle flat size\"<\/p>\n

[\/vc_column_text][vc_column_text]Considering a 0.40mm nozzle having a 0.80mm flat with a 0.20mm layer thickness have a maximum line width of 1.00mm.[\/vc_column_text][vc_single_image image= »14218″ img_size= »large » alignment= »center » onclick= »link_image »][\/vc_column][\/vc_row][vc_row css= ».vc_custom_1531243097953{padding-top: 40px !important;} »][vc_column][vc_column_text css= ».vc_custom_1531241945070{padding-bottom: 15px !important;} »]<\/p>\n

The myths about layer height<\/h2>\n
\n\n

It\u2019s common to see that 50% of your nozzle size is the sweet spot for printing. This works totally fine in most printing situations. It\u2019s also very frequent to hear that it\u2019s not good or possible to go higher in layer height than the nozzle diameter.[\/vc_column_text][vc_column_text]<\/p>\n

Going bigger!<\/h3>\n

However, nothing is stopping you from going a lot higher or lower. For example, the two images below are the same exact Gcode, one ran with a 1.00mm nozzle, the other with a 0.40mm nozzle. The line height is 0.50mm and line width is 1.50mm.[\/vc_column_text][\/vc_column][\/vc_row][vc_row][vc_column width= »1\/2″][vc_single_image image= »14222″ img_size= »full » add_caption= »yes » alignment= »center » onclick= »link_image »][\/vc_column][vc_column width= »1\/2″][vc_single_image image= »14219″ img_size= »full » add_caption= »yes » alignment= »center » onclick= »link_image »][\/vc_column][\/vc_row][vc_row][vc_column][vc_column_text]As you can see, there is barely any difference. As long as the 0.40mm nozzle flat is within the margin, the result is pretty good. In this case, the layer height was 125% the nozzle diameter.<\/p>\n

Smaller nozzle can still extrude large lines, but have more flow restrictions compared to larger nozzles. The speed must be decreased to get the same results.[\/vc_column_text][\/vc_column][\/vc_row][vc_row][vc_column width= »1\/2″][vc_column_text]<\/p>\n

Going smaller!<\/h3>\n

A similar test was done using a 1.00mm nozzle, but with 0.05mm layer height. In this set-up, the layer height is only 5% of the nozzle size. The results are quite interesting. The picture below shows a 20mm diameter half-sphere side by side with an AA battery. The zoom is pretty high, and we still have a hard time seeing the layers.[\/vc_column_text][\/vc_column][vc_column width= »1\/2″][vc_single_image image= »14223″ img_size= »medium » alignment= »center » onclick= »link_image »][\/vc_column][\/vc_row][vc_row][vc_column][vc_column_text]Printing with such a big nozzle reduces your detail level on the XY plane compared to a smaller nozzle. However, the line are very thick, thus greatly reducing the infill and contour printing time.[\/vc_column_text][\/vc_column][\/vc_row][vc_row css= ».vc_custom_1531243107040{padding-top: 40px !important;} »][vc_column][vc_column_text]<\/p>\n

Choosing the right flow<\/h2>\n
\n\n

Choosing the right flow will save you a lot of trial and error before getting consistent results. Polymer flow variation can be understood in the following way:<\/p>\n